
BuildingPoint

David Elimelech

Nicholas Magal

Rafael Marques Braga

The Problem

#
#
#
#

The Idea

#
#
#
#

Overview
● Construct a reliable, efficient, and robust machine learning model enhanced by

geolocation capable of detecting buildings

● Integrate the model into a user-friendly mobile application that will allow the user
to interact with the model and benefit from its service

● Document our findings, and ensure scalability

#
#
#
#

Inspiration
● Other apps like Yelp or Google Maps attempt to accomplish the same thing, but

only work with geolocation and orientation sensors, leaving the user to have to
figure out his surroundings for himself

#
#
#
#

Demo

#
#
#
#
https://docs.google.com/file/d/1BSecdhH7JDkfZ_rD42eVX2CdyB4XKkeF/preview

Project Timeline

JAN

Planning

Planned out which
technologies we were
going to use to build
our model and our
app.

FEB

Machine Learning
Research

Began looking into
CNNs

Experimented with
Tensorflow/Keras

Researched transfer
learning

Gathered data

MAR

Model
Implementation

Made our model
using
Tensorflow/Keras

Utilized a transfer
learning approach

APR

App
Development

Incorporated the
model into an
Android application
with a user friendly
GUI.

#
#
#
#

What was accomplished?

1. Created a machine learning model with over 90% accuracy

2. Created a database hosting building information

3. Incorporated user geolocation into classification

4. Synthesized the model into a user-friendly mobile application

#
#
#
#

Our Stack

Tensorflow, along with its
Keras API (both built on
Python) was used to train our
ML model

We then used Firebase’s …
● ML Kit to host our model
● Firestore database to hold

building information

Our ML model was finally
integrated into an Android
application, working
seamlessly together with
Firebase’s resources

#
#
#
#

Android App Overview
● Our app has three main activities

○ Splash
○ MainActivity
○ Result Page

● Theme
○ Orange and Green. Go Canes!

#
#
#
#

Splash

● Shown on app launch

● BuildingPoint logo and UM logo

● Displayed for 3 seconds, automatically
takes user to camera page

#
#
#
#

MainActivity
Gallery Activity

Freeze Camera on Click

Display Information Dialog on Click

● The homepage of
app

● Camera preview

● Information dialog

#
#
#
#

ResultPage

After Choosing a
photo from
Gallery Classify
Photo

● Secondary Page

● Static Preview

● Information dialog

#
#
#
#

Machine Learning

#
#
#
#

What is a CNN?

A convolutional neural net, in most cases, is the most ideal paradigm to
classify images.

● CNN is composed of two main parts
○ Feature Learning

■ Extract features from
the image

■ Deeper you go, the more
abstract the features

■ Breaks down the image,
reducing image
parameters

○ Classification
■ Uses features for

classification

#
#
#
#

Feature Learning

● Stack of convolutional and pooling layers

● Convolutional layers are responsible for extracting features

● Pooling layers are responsible for downsampling the feature
map (generalization)

#
#
#
#

Classification

● Densely connected neural network

● Responsible for training the model to classify images by
updating the weights

● Output is a series of probabilities of the input image
belonging to each class

#
#
#
#

Transfer Learning

● Originally, we wanted to train our own model from scratch,
but …

○ Time consuming

○ Computationally intensive

● Transfer Learning
○ How does it work?

■ Don’t need to teach the model what it already
knows

○ What do we gain?
■ We only need to fine-tune the model, saving us a

lot of time

#
#
#
#

Implementation Cycle

Preprocess Data
Formatting, Normalization,
One-Hot Encoding, Split data
into Train & Test, Augment data

Create Model

Import MobileNet model, Freeze
early convolutional layers

Implement into
App
Integrate model into Android
app

Train/Test Model

Train our model using training
set

Evaluate our model using testing
set

01

02

03

04

#
#
#
#

Performance and Remarks

● Over 90% accuracy on testing and training sets in 10 epochs
○ Training completed in under 20 minutes

● Small size of model
○ 13MB, despite millions of parameters
○ Optimal for mobile application

● Result: a lightweight, scalable, high-performing model

#
#
#
#

FireBase

#
#
#
#

Setting up Firebase

● Used Firestore database to create a collection of
documents referring to each building

#
#
#
#

Custom ML Kit

● Saved our ML model as a Tensorflow Lite model, and
imported it into Firebase’s ML Kit

● Saved Locally

#
#
#
#

Technical Challenges

#
#
#
#

Which technology?

● Originally, planned on using Google’s Flutter
○ Built on Dart
○ Can create apps native to both iOS and Android

● Lack of Documentation
○ Custom ML model

● Android

#
#
#
#

How to build our CNN?

● Initially wanted to build a CNN from scratch using
TensorFlow

○ This was technically challenging and required a
great amount of resources

○ Time Constraint

● Went with transfer learning using Keras, a time and
resource efficient option.

● What architecture to use?
● Thought about integrating the geolocation into the

classification part of the CNN itself as extra inputs

#
#
#
#

ML Model Overfitting

● While training our model, we were experiencing severe
overfitting

● To combat overfitting
○ Added images
○ Cut epochs
○ Augmented data
○ Reduced complexity of our model (removing

preprocessing function)
○ Increased data shuffling

#
#
#
#

Gathering and Cleaning Data

● Large volumes of the buildings we wanted to train our

model did not exist.

● We took at least 130 pictures from different angles of

each building.

● In order to get more data, we applied data augmentation.

● Deleted photos with similar angles.

#
#
#
#

Sluggish Application

● Slow and unresponsive app initially

● Solutions
○ Download local model of machine Learning

■ Was able to do this because the model was
lightweight!

○ Reduce database queries
■ Query snapshot instead of individual

buildings

#
#
#
#

What to do with geolocation?

● Originally, we used the geolocation to increase the
probability of the nearest building coming out of the ML
model

○ Problem
■ Geolocation does not really tell you what

building you are looking at, but rather which
building you cannot be looking at

● Instead used geolocation as a validation step
○ If user location is within 100 meters

#
#
#
#

Confidence/Background Noise

● How do we gauge how confident we are in our model?

● Establish a confidence threshold
○ If probability is < 70%, alert as background noise
○ Rather have a more strict app that tells the user it

couldn’t classify the image then classify it
incorrectly

● Definitely a lot of work that can be done here to fine-tune
this process, especially as more buildings are added to
database.

#
#
#
#

Bugs

● ● As expected, we faced numerous bugs.

○ Examples Include:

■ Conflicting packages in Python

■ Camera crashing

■ Switching activities crashed app due to ML
model still classifying

#
#
#
#

Looking Forward

#
#
#
#

AR

● Keep camera actively previewing

● Superimpose AR billboard

● Track building

#
#
#
#

Add more Buildings- Campus/Off Campus

● Completely incorporate campus into app

● Approach UM app developers

● Add buildings using a Bing images or Google images API so it can be implementable in a

city

● Have a program where users can take photos of buildings for model

#
#
#
#

Better Confidence algorithm

Other algorithms to improve the confidence levels could be used including

● Increasing the probability of the closest buildings by a certain increment

● Checking the 3 most probable buildings from the building recognition algorithm and

comparing their distance to the user’s current location

● Find a better algorithm that takes into account the user’s direction, weather and time of

the day.

#
#
#
#

Machine learning model by Geography

● On a large scale machine learning model, the complexity of the model increases

considerably

● To reduce complexity, domains by geography should be separated

● Create separate machine learning models by geography with limited domains

#
#
#
#

Create iOS Version

● Apple contains massive market share

● Lots of potential in iOS market

● Flutter or Swift?

#
#
#
#

Conclusions

&

Thank You!

#
#
#
#

