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Abstract—This document will provide a solution of a linear 

control systems problem. It should be able to provide a control 

system for a pitch attitude autopilot that automatically adjusts a 

sudden weight shift of an aircraft if all passengers rush to the back 

of the plane. 

Index Terms—Pitch altitude autopilot, Linear control systems, 

lead controller, integral system. 

I. INTRODUCTION  

The problem introduced in this paper is that “Golden Nugget 

Airlines has opened a free bar in the tail of their airplanes in an 

attempt to lure customers. In order to automatically adjust for 

the sudden weight shift due to passengers rushing to the bar 

when it first opens, the airline is mechanizing a pitch-attitude 

autopilot.” [1]  For that a linear control system is going to be 

designed and built using techniques such as basic feedback 

strategies, root locus analysis and design along with others.  

The proposed control system of the for the pitch-attitude 

autopilot is the following: 

 

 

When the input of the system, θr, is the desired angle of the 

airplane. Mp in the system is the step disturbance of the system, 

meaning the passenger movement from them going to the end of 

the plane. This disturbance has a given value of 

 

𝑀𝑝 =  
𝑀0

𝑠
 , 𝑀0  ≤ 0.6  

 

The output of the system, θ, is the final angle of the plane 

after the disturbance of the passengers and after being corrected 

by the control system, along with its components, the elevator 

servo (the controller, D(s)), the aircraft dynamics (the plant, 

G(s)), rate gyro and the attitude sensor (H(s)).  

   

II. PROBLEM ANALYSIS 

A.  Finding the value of K to keep the steady state error in θ to 

be less than 0.02 radians (≈1º)  

To find the value of K, in the elevator servo equation, to be 

less than 0.02 radians, first we need to find the open loop 

equation of the system. Since the error of the system will be 

introduced in Mp as the disturbance, the open loop equation that 

will have to be looked at is between the disturbance of the 

system, Mp, and the output, θ. This equation is found to be   
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Knowing the open loop equation of the system, it can be seen 

that it is a Type 1 system. Furthermore, using the final value 

theorem for a type 1 system and the equation for the steady state 

error being equal; 

 

𝑒𝑠𝑠 = lim
𝑠→0

𝑠
𝜃(𝑠)

𝑀𝑝(𝑠)
 ≤ 0.02 =

3 ∗ 10 ∗ 0.6

3𝐾
= 0.02 

 

∴ 𝐾 = 300 

 

After doing the calculations, for the steady state error in the 

system to be less than 0.02 radians, the value of K should be 

approximately equal to 300. 

 

Figure 1 - Proposed Control System 



B. Drawing a root locus with respect to K 

To find the root locus of the system with respect to K, the 

open loop function, L(s), of the characteristic equation, ∆, of the 

system should be used. This equivalent to the following: 

 

𝐿(𝑠) =  
(𝑠 + 3)𝐾

(𝑠 + 10)(𝑠2 + 4𝑠 + 5)
 

 

 

Using the equation above and MATLAB the following root 

locus was found. 

 

C.  Finding the value of K for the system to be unstable 

For the system to be unstable that means the poles are found 

in the right-hand side of the graph. For that to happen, using an 

estimate from the root locus found in Part B, K was found to be 

bigger than 133. This was the closest estimate possible when the 

pole was at -0.04+3.6i. Any K value higher than that, using 

MATLAB made the system unstable. 

 

D. Supposing K is equal to 600, finding its unstable roots 

If K is equal to 600, the characteristic equation, ∆, is used. 

The characteristic equation is equal to the open loop equation 

plus 1. This is equal to the following: 

 

∆ = 1 + 𝐿(𝑠) = 1 +  
(𝑠 + 3)𝐾

(𝑠 + 10)(𝑠2 + 4𝑠 + 5)
 

 

=  𝑠4 + 14𝑠3 +  45𝑠2 + 650𝑠 + 1800𝑘  
 

By plugging in that equation in MATLAB, and finding its 

roots, these can be found to be equal to -13.5014,   1.2183 ± 

6.6284i and  -2.9352.   

As seen, it can be proved that when K = 600, it will yield to 

an unstable system since there are poles in the right hand side of 

the system, when the roots are equal to 1.2±6.62i.  

E. Given a rate gyro, and with K=600, finding its best place to 

implement it.  

If a rate gyro was given, the best place to implement it would 

be before the elevator servo, this way the controller would be 

able to take into account any change made to the information 

from the rate gyro and make the entire system stable using all 

the information it has available.  

The new block diagram of the control system would now 

look like as shown in figure 2. 

 

 

F. Figuring out the root locus with respect to Kt  

To find the root locus with respect to Kt, first the closed loop 

equation must be found. Using Mason’s rule and the diagram 

seen in figure 3, the loop equation is found to be: 

 

𝐿(𝑠) =  
(1 − 𝐾𝑡)(𝐾𝑠 + 3𝐾)

(𝑠 + 10)(𝑠2 + 4𝑠 + 5)𝑠
  

 

Using K = 600, the loop equation becomes 

 

𝐿(𝑠) =  
(1 − 𝐾𝑡)(600𝑠 + 1800)

(𝑠 + 10)(𝑠2 + 4𝑠 + 5)
  

 

By inserting the equation in MATLAB, the following root 

locus is given 

 

Figure 4 - New root locus of stable system 

Figure 3 - New Block diagram (Part E) 

Figure 2 - Root locus of system 



As seen in the root locus above the system is now stable with 

K = 600 and with any value of Kt when before it was an unstable 

system when K was equals to 600.  

G. Finding the maximum damping factor of the complex roots 

When examining the root locus from part f , it can be seen 

that the maximum damping factor would be of ζ = 0.904  with 

the gain of 0.0397 as it can be seen in figure 4. At this point the 

dominant pole is located at -4.25 ± 2.01i. 

 

 

 

H. Adding an integral term and an extra lead to the system 

A lead compensator usually has the form of  

 

𝐺𝑐(𝑠) = 𝐾𝑐𝛼 (
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
) 

 

With α being from 0 to 1. The advantages of a lead 

compensator are that it could improve the damping of the 

response of the system. Furthermore, for an integral controller, 

it would usually decrease the steady state error to 0, since the 

steady state error is equal to the reciprocal of the velocity 

constant and by adding a integrator to the system, it would 

increase the type of the system, giving a 0 error in the step 

response as well as in the impulse response which the steady 

state error was already 0. However, it would also make the 

damping decrease and it would make the settling time of the 

system longer. 

 

 

III. CONCLUSION 

In this paper, it was discussed on how a pitch pilot altitude 

system would be built using a set given of specifications. During 

the study of the problem, it was found a value for the system for 

it to be stable with a simple feedback loop, but after it was also 

seen on how adding a rate gyro would help the system to become 

more stable as the K value got higher. By adding the rate gyro, 

the system became stable with a much higher value of K (=600) 

when the highest value of K for it to be stable without the rate 

gyro was found to be 150 at the start of the problem. Through 

out the end of the problem it was seen that by adding a lead 

compensator to the system the damping response could be 

improved even further and by adding an integral controller the 

steady state error could even be reduced to 0. 
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