
PUBLICATION ANALYSIS FOR CHOSEN UNIVERSITIES FROM GOOGLE SCHOLAR

Rafael Marques Braga

University of Miami – School of Engineering

rxm403@miami.edu

ABSTRACT

This paper examines the acquisition and analysis of data

from certain universities in Google Scholar. It looks at the

implementation of a web crawler to get data from the online

search engine and considers how to analyze such data. The

paper also lists the difficulties with analyzing said data and

proposes solutions to these issues.

Index Terms— Big data, Google Scholar, web

crawling, PySpark

1. INTRODUCTION

Google Scholar is one of the most accessible, leading, and

complete search engines freely available as a source to the

public. It has indexed information containing metadata or

full text of scholarly literature (published academic articles,

theses, conference papers, etc.) from countless profiles

which can be organized in an immeasurable number of

ways.

Google Scholar, just like Google’s search engine itself, uses

a web crawler, Googlebot, that scans and indexes all the

useful information together [1].

This information, however, can be deemed to be very useful,

if properly retrieved and analyzed. Some examples of how

this data is set to be useful is by looking at correlations

between authors, co-authors, different published papers or

looking at patterns into publications found to be on the same

topic.

With so much information indexed in Google Scholar, this

is definitely in the big data analysis field as it has billions of

published documents to be analyzed and information to be

retrieved from.

This paper will focus on the retrieval of data from Google

Scholar and the analysis of such data using big data tools

such as PySpark and Google Cloud Platform in order to

examine such information as fast and efficiently as possible.

The main focus of the data analysis will be to find the best

co-authors for each professor from different universities

using the information retrieved from Google Scholar.

In order for this to be done, the goal of the paper was

divided into 4 different tasks:

[1] Picking a list of 10 different university profiles from the

Google Scholar website.

[2] Implementing a program to identify the top 300

professors for each university.

[3] Looking at the paper list from each professor,

identifying the best co-author for the specific professor

in the fastest way possible.

[4] Using the PySpark to partition the collected papers and

analyze the data.

How each of these sub tasks were implemented are

discussed along with some description and analysis of the

data, the difficulties of such task and the optimizations that

can be done when implementing and improving upon the

analysis of such information.

2. IMPLEMENTATION

2.1. Task [1]

This goal of this task is to choose the universities for which

its professors will be analyzed. For this, the 10 universities

chosen were the following:

[1] University of Miami

[2] Florida International University

[3] Purdue University

[4] University of Florida

[5] University of Pennsylvania

[6] University of Pittsburgh

[7] Georgia Institute of Technology

[8] Stanford University

[9] Florida State University

[10] University of California, Los Angeles

Each of these universities holds a unique organization code

within Google Scholar. This 20-digit number was manually

retrieved from the URL of the university profile and stored

in an array containing all the numbers of the listed

universities. This was done so it can be easier to scrape the

information of all selected universities automatically

without having to change one by one in task.

 2.2. Task [2]

The main goal for task 2 is data acquisition. This is where a

real-world scenario for big data analytics starts, as usually

the data to be analyzed is not ready to be given or measured

in a lab. Instead, when dealing with big data, technology

companies like Google, Microsoft and Meta have to extract

their data from all their users in order to mine the data and

extract patterns.

In this case scenario, the data is to be acquired from Google

Scholar.

When looking at the universities’ profiles from the ones

chosen in Task 1, it shows that all professors are listed in

descending order when looking at their number of citations.

These results are shown with 10 professors in each page,

with their name, university, department, and number of

citations being displayed.

For the purposes of this task, only the professor’s name,

number of citations and the URL for the professor was

scraped, saved, and exported to a .csv file.

All the information was scrapped using the requests and

Beautiful Soup library for python.

However, in order to analyze documents in a ‘big data’

scale, the top 300 professors’ information needed to be

scrapped. For this, a small program to request the next page

of the Google Scholar university’s profile results page had

to be created to loop through the 30 first results pages (since

it only shows 10 professors per page).

In the final results, the data scrapped contained exactly 10

.csv files, each containing the information (name, citations,

and URL) of the top 300 professors for each university

being analyzed, totaling 3,000 professors.

2.3. Task [3]

The next step is to find the best co-author for each of the

3,000 professors whose information was acquired. In order

to find the best co-author for each professor, one must

navigate to each professor’s page and look at all the authors

of the papers said professor has published.

For this to be done automatically, another scrapping solution

needed to be engineered. This is done by iterating through

each professor’s page and looking at all the papers from

each professor. All the information from the papers is then

scrapped and saved to another table (later exported to a .csv

file). In this new table, each table entry contained the

paper’s name, authors, number of citations, and the URL for

the paper (this is needed in case not all authors for the paper

are listed at first).

A small extra scraping part had to be added in this scenario

since, if there are many authors for a specific paper, not all

authors are listed at first. The program can recognize this,

and if this happens, a request for the paper’s URL is made,

and all the authors are finally extracted from that page.

After all this data extraction is done, the final data contained

over 3,000 .csv files, one for each professor. Each file

contained anywhere from twenty up to thousands of entries,

as it would depend on how many published documents each

professor had. Each file was saved with the professor’s

name.

 2.4. Task [4]

The next natural step after all the data is acquired is to

analyze it and find the best co-author for each professor. For

this analysis, PySpark was used in task 4.

In order to find the best co-author, the only information

needed for this analysis is the professor’s name, all the co-

authors for every paper, and the number of citations for

every paper. This data is then loaded in to an RDD so it can

be analyzed in PySpark.

Two methods were used in order to find the best co-author.

The first is to find which co-author for each professor had

the most citations. The second way used to analyze the data

is to look at which co-author had the most publications for

that specific professor without counting their number of

citations.

In the first analysis scenario, for it to be efficiently done in

PySpark, the coding was done similarly to the word count

problem. However, in this scenario, each co-author was

treated as a ‘word’, it being the key, and the number of

citations was then mapped with it. A reduceByKey function

was then called to group all the co-authors together and add

all their number of citations. If the same RDD is then sorted

in decreasing order, the first entries for the RDD will show

the best-coauthors for the professor by showing their total of

citations.
Image 1. RDD Transformations

For the second analysis, the same idea was used, with

reduceByKey in the authors used as keys. However, this

time, instead of the co-authors being mapped with the

number of citations, a 1 was initially mapped with it, so by

the final result, it would say how many papers that specific

co-author had published.

3. ANALYSIS

As mentioned in section 2.3, the analysis to find the best co-

author was done through the total number of citations and

papers published by each author. The time that it took for

the algorithm to find the co-author for each professor was

measured and analyzed.

It should be noted that due to some difficulties in the data

acquisition, namely, the blocking of automatic web scraping

by Google and the violation of its terms of service, most

professors only had their top 20 papers listed in their .csv

file. This will be further discussed later.

After using PySpark to analyze the best co-author for each

professor, it was found that, on average, it took around 0.69

seconds to run through all the operations and find the best

co-author per professor when looking at the total number of

citations.

These results only account for the top co-author. However,

to print the 5 best co-authors, this had little effect on the

amount of time that was taken to the calculations.

The second method was to examine the best co-author

through their number of publications. The average time to

find the best co-author for each professor was 0.62s when

scanning only 145 professors. When the number of

professors increased to 300, this time decreased to 0.61s per

professor, on average. This decrease in time could have

happened due to a number of reasons. The main expected

reason for the average time to have decreased is that as the

number of professors increased, more errors occurred when

analyzing the results. These errors would end up skipping

the analysis of the professor, making the average time to

appear to be faster.

As for the calculations of the number of papers published

being 0.07s faster than the total number of citations per

professor, this could be due to the simpler mapping of each

co-author to 1 initially rather than having to access the

number of citations of each paper. This has decreased the

number of shuffling functions that were called, and

therefore, makes the algorithm faster.

Errors when finding the best co-author were happening at a

rate of 0.6% – 3% depending on the size of the data set and

the university being analyzed. This would have happened

mainly due to lack of consistency in the dataset (names with

accents, commas, or names written in a different alphabet).

This error can easily be fixed in the future, decreasing the

error rate.

It was also found that using the dataset and the specific

algorithm, there was no significant difference in the

processing times when using the Google Cloud platform or

a local machine. This is due to the lack of parallel

computing that is being used. Since there were only 20

papers per professor in the dataset, PySpark could not make

much use of the partitions, almost excluding the parallel

computing advantage of the equation and adding the time to

access the data files from cloud storage. Some new analysis

can be seen in the optimization section of the paper to

further study this issue.

As for the results of the code, they were displayed as shown

in Image 2. First, the best co-author is listed for each

professor, and then the average time to find each co-author

is shown.

Image 2. Results sample

The last result that was given was that the average number

of papers for the best co-author was 5.88 papers, when

looking at the best co-author by the number of papers

published.

4. DIFFICULTIES

4.1. Web Scraping at scale

The first major difficulty with this project is web scrapping

at scale using Google. Google’s terms of service clearly

prohibit “the sending of automated queries of any sort to our

system without express permission in advance from

Google.” [2]. This is done so it does not overload their

servers with traffic. Getting caught with automatic requests

to Google’s search engine gets the IP flagged, leading to the

need to bypass Captchas to continue the search and

scrapping. This was a huge difficulty in scraping the web as

new APIs needed to be implemented in order to get through

proper amounts of data and actually have results with huge

sizes. If all data as foreseen had been captured, it is expected

that Google Cloud Platform would have performed a lot

faster than a local machine.

Another solution to overcome this problem is to use proxy

servers. However, this is a paid solution to the problem

which also slows down the crawling by a significant margin.

Having to crawl through multiple pages also resulted in

getting flagged by Google and slowed down the data

acquisition by a lot, since only 10 professors are shown per

page in the university’s profile page and only 20 papers are

shown at once in the professor’s profile page. For example,

when a professor has over 1000 papers, multiple clicks have

to be simulated. This leads to a very slow web crawling time

as human speeds of navigating through web pages needs to

be simulated or it leads to Google flagging and

‘blacklisting’ certain IP addresses due to the high number of

requests to its servers.

4.2. Data inconsistency and pre-processing

Another huge difficulty to overcome in this task was the

data inconsistency. When dealing with big data, especially

from the web, there are multiple ways the same data can be

displayed.

For example, for the co-author Valarie A Zeithaml, she had

her name published in multiple papers; however she had her

name listed as VA Zeithaml, V Zeithaml, Valarie A

Zeithaml, among others. These slight changes are hard to

overcome.

The best solution for this is to either match the names by the

last names or by using algorithms in order to match similar

names.

4.3. PySpark

For PySpark, the biggest difficulty was that using the data

acquired, the best co-author was always the professor. To

overcome that, a filter function was used to filter out all the

authors which had the same last name as the professor, since

that name could also be written in multiple ways. However,

this increased the computational time since another 2

shuffling functions had to be added.

Another huge difficulty of PySpark was to make the

algorithm be as efficient and fast as possible in order to find

the best coauthor. For this, the number of shuffling

functions had to be decreased as much as possible. This

problem could also be further improved if the number of

.csv files was decreased. However, then another column of

data indicating the professor for each co-author would have

to be added, creating the possibility of increasing the

calculation time.

5. OPTIMIZATIONS AND FURTHER STUDIES

There are a lot of factors that could be used to further

improve and optimize this project. The first one is

increasing the number of studies made using Google Cloud

Platform - GCP. By optimizing this algorithm to be used

with GCP and parallel computing, plus with better

management of data, it could drastically decrease the

computational times. This is because file access and

calculations would be faster when using top of the line

processors and databases, which are available when using

GCP.

Another further study that could be done for this project

would be to compare the time it takes to find the best co-

author using usual computing resources. For example, one

could create an algorithm only using Python and its libraries

without any big data mining resource. This could also be

done using only queries in SQL. This would allow a time

comparison for the calculations using python, SQL and

PySpark.

Lastly, one could also look at correlations of the data

and do some further data mining with the information

acquired. By looking at the correlation with quantity of

papers published vs. number of citations, it could easily give

more insight of who could be highlighted as a better co-

author for a specific professor.

6. CONCLUSION

In sum, this paper showed how big data can be acquired

from the internet in a real-world scenario in order to be

analyzed. Running through the analysis of the results, it

could be seen how big data tools can be used to help the

faster processing of big data algorithms and how tools such

as PySpark were used for data processing. This paper also

looked at the difficulties of processing such large amounts

of data due to its data inconsistencies, lack of optimization,

and difficulties getting ahold of such amounts of data in a

limited amount of time. However, it can be concluded that

all these difficulties can be overcome, and big data analytics

is still critical to get vast amounts of information mined and

analyzed.

7. REFERENCES

1. [1] R. Vine, “Google scholar,” Journal of the Medical

Library Association, Jan-2006. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC13247

83/. [Accessed: 01-May-2022].

2. [2] R. Vine, “Google scholar,” Journal of the Medical

Library Association, Jan-2006. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC132478

3/. [Accessed: 01-May-2022].

