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ABSTRACT 

 

This paper examines the acquisition and analysis of data 

from certain universities in Google Scholar. It looks at the 

implementation of a web crawler to get data from the online 

search engine and considers how to analyze such data. The 

paper also lists the difficulties with analyzing said data and 

proposes solutions to these issues. 

 

Index Terms— Big data, Google Scholar, web 

crawling, PySpark 

 

1. INTRODUCTION 

 

Google Scholar is one of the most accessible, leading, and 

complete search engines freely available as a source to the 

public. It has indexed information containing metadata or 

full text of scholarly literature (published academic articles, 

theses, conference papers, etc.) from countless profiles 

which can be organized in an immeasurable number of 

ways.  

 

Google Scholar, just like Google’s search engine itself, uses 

a web crawler, Googlebot, that scans and indexes all the 

useful information together [1].  

 

This information, however, can be deemed to be very useful, 

if properly retrieved and analyzed. Some examples of how 

this data is set to be useful is by looking at correlations 

between authors, co-authors, different published papers or 

looking at patterns into publications found to be on the same 

topic.  

 

With so much information indexed in Google Scholar, this 

is definitely in the big data analysis field as it has billions of 

published documents to be analyzed and information to be 

retrieved from. 

 

This paper will focus on the retrieval of data from Google 

Scholar and the analysis of such data using big data tools 

such as PySpark and Google Cloud Platform in order to 

examine such information as fast and efficiently as possible.  

The main focus of the data analysis will be to find the best 

co-authors for each professor from different universities 

using the information retrieved from Google Scholar.  

 

In order for this to be done, the goal of the paper was 

divided into 4 different tasks:  

 

[1] Picking a list of 10 different university profiles from the 

Google Scholar website.  

[2] Implementing a program to identify the top 300 

professors for each university. 

[3] Looking at the paper list from each professor, 

identifying the best co-author for the specific professor 

in the fastest way possible.  

[4] Using the PySpark to partition the collected papers and 

analyze the data. 

 

How each of these sub tasks were implemented are 

discussed along with some description and analysis of the 

data, the difficulties of such task and the optimizations that 

can be done when implementing and improving upon the 

analysis of such information. 

 

 

 

2. IMPLEMENTATION 

 

2.1. Task [1] 

This goal of this task is to choose the universities for which 

its professors will be analyzed. For this, the 10 universities 

chosen were the following:  

 

[1] University of Miami 

[2] Florida International University 

[3] Purdue University 

[4] University of Florida 

[5] University of Pennsylvania 

[6] University of Pittsburgh 

[7] Georgia Institute of Technology 

[8] Stanford University 

[9] Florida State University 

[10]  University of California, Los Angeles 

 

Each of these universities holds a unique organization code 

within Google Scholar. This 20-digit number was manually 

retrieved from the URL of the university profile and stored 

in an array containing all the numbers of the listed 

universities. This was done so it can be easier to scrape the 



information of all selected universities automatically 

without having to change one by one in task. 

 

  

 2.2. Task [2] 

 

The main goal for task 2 is data acquisition. This is where a 

real-world scenario for big data analytics starts, as usually 

the data to be analyzed is not ready to be given or measured 

in a lab. Instead, when dealing with big data, technology 

companies like Google, Microsoft and Meta have to extract 

their data from all their users in order to mine the data and 

extract patterns. 

 

In this case scenario, the data is to be acquired from Google 

Scholar.  

 

When looking at the universities’ profiles from the ones 

chosen in Task 1, it shows that all professors are listed in 

descending order when looking at their number of citations. 

These results are shown with 10 professors in each page, 

with their name, university, department, and number of 

citations being displayed.  

 

For the purposes of this task, only the professor’s name, 

number of citations and the URL for the professor was 

scraped, saved, and exported to a .csv file.  

 

All the information was scrapped using the requests and 

Beautiful Soup library for python.  

 

However, in order to analyze documents in a ‘big data’ 

scale, the top 300 professors’ information needed to be 

scrapped. For this, a small program to request the next page 

of the Google Scholar university’s profile results page had 

to be created to loop through the 30 first results pages (since 

it only shows 10 professors per page).  

 

In the final results, the data scrapped contained exactly 10 

.csv files, each containing the information (name, citations, 

and URL) of the top 300 professors for each university 

being analyzed, totaling 3,000 professors.  

 

2.3. Task [3] 

 

The next step is to find the best co-author for each of the 

3,000 professors whose information was acquired. In order 

to find the best co-author for each professor, one must 

navigate to each professor’s page and look at all the authors 

of the papers said professor has published.  

 

For this to be done automatically, another scrapping solution 

needed to be engineered. This is done by iterating through 

each professor’s page and looking at all the papers from 

each professor. All the information from the papers is then 

scrapped and saved to another table (later exported to a .csv 

file). In this new table, each table entry contained the 

paper’s name, authors, number of citations, and the URL for 

the paper (this is needed in case not all authors for the paper 

are listed at first).  

 

A small extra scraping part had to be added in this scenario 

since, if there are many authors for a specific paper, not all 

authors are listed at first. The program can recognize this, 

and if this happens, a request for the paper’s URL is made, 

and all the authors are finally extracted from that page. 

 

After all this data extraction is done, the final data contained 

over 3,000 .csv files, one for each professor. Each file 

contained anywhere from twenty up to thousands of entries, 

as it would depend on how many published documents each 

professor had. Each file was saved with the professor’s 

name. 

 

 

 2.4. Task [4] 

 

The next natural step after all the data is acquired is to 

analyze it and find the best co-author for each professor. For 

this analysis, PySpark was used in task 4. 

 

In order to find the best co-author, the only information 

needed for this analysis is the professor’s name, all the co-

authors for every paper, and the number of citations for 

every paper. This data is then loaded in to an RDD so it can 

be analyzed in PySpark.  

 

Two methods were used in order to find the best co-author. 

The first is to find which co-author for each professor had 

the most citations. The second way used to analyze the data 

is to look at which co-author had the most publications for 

that specific professor without counting their number of 

citations.  

 

In the first analysis scenario, for it to be efficiently done in 

PySpark, the coding was done similarly to the word count 

problem. However, in this scenario, each co-author was 

treated as a ‘word’, it being the key, and the number of 

citations was then mapped with it. A reduceByKey function 

was then called to group all the co-authors together and add 

all their number of citations. If the same RDD is then sorted 

in decreasing order, the first entries for the RDD will show 

the best-coauthors for the professor by showing their total of 

citations. 
Image 1. RDD Transformations 

  



 

For the second analysis, the same idea was used, with 

reduceByKey in the authors used as keys. However, this 

time, instead of the co-authors being mapped with the 

number of citations, a 1 was initially mapped with it, so by 

the final result, it would say how many papers that specific 

co-author had published.    

 

   
3. ANALYSIS 

 

As mentioned in section 2.3, the analysis to find the best co-

author was done through the total number of citations and 

papers published by each author. The time that it took for 

the algorithm to find the co-author for each professor was 

measured and analyzed. 

 

It should be noted that due to some difficulties in the data 

acquisition, namely, the blocking of automatic web scraping 

by Google and the violation of its terms of service, most 

professors only had their top 20 papers listed in their .csv 

file. This will be further discussed later.   

 

After using PySpark to analyze the best co-author for each 

professor, it was found that, on average, it took around 0.69 

seconds to run through all the operations and find the best 

co-author per professor when looking at the total number of 

citations. 

 

These results only account for the top co-author. However, 

to print the 5 best co-authors, this had little effect on the 

amount of time that was taken to the calculations.  

 

The second method was to examine the best co-author 

through their number of publications. The average time to 

find the best co-author for each professor was 0.62s when 

scanning only 145 professors. When the number of 

professors increased to 300, this time decreased to 0.61s per 

professor, on average. This decrease in time could have 

happened due to a number of reasons. The main expected 

reason for the average time to have decreased is that as the 

number of professors increased, more errors occurred when 

analyzing the results. These errors would end up skipping 

the analysis of the professor, making the average time to 

appear to be faster. 

 

As for the calculations of the number of papers published 

being 0.07s faster than the total number of citations per 

professor, this could be due to the simpler mapping of each 

co-author to 1 initially rather than having to access the 

number of citations of each paper. This has decreased the 

number of shuffling functions that were called, and 

therefore, makes the algorithm faster.  

 

Errors when finding the best co-author were happening at a 

rate of 0.6% – 3% depending on the size of the data set and 

the university being analyzed. This would have happened 

mainly due to lack of consistency in the dataset (names with 

accents, commas, or names written in a different alphabet). 

This error can easily be fixed in the future, decreasing the 

error rate.  

 

It was also found that using the dataset and the specific 

algorithm, there was no significant difference in the 

processing times when using the Google Cloud platform or 

a local machine. This is due to the lack of parallel 

computing that is being used. Since there were only 20 

papers per professor in the dataset, PySpark could not make 

much use of the partitions, almost excluding the parallel 

computing advantage of the equation and adding the time to 

access the data files from cloud storage. Some new analysis 

can be seen in the optimization section of the paper to 

further study this issue.   

 

As for the results of the code, they were displayed as shown 

in Image 2. First, the best co-author is listed for each 

professor, and then the average time to find each co-author 

is shown. 

 
Image 2. Results sample 

 
 

The last result that was given was that the average number 

of papers for the best co-author was 5.88 papers, when 

looking at the best co-author by the number of papers 

published. 

 

4. DIFFICULTIES 

 

4.1. Web Scraping at scale 

 

The first major difficulty with this project is web scrapping 

at scale using Google. Google’s terms of service clearly 

prohibit “the sending of automated queries of any sort to our 

system without express permission in advance from 

Google.” [2]. This is done so it does not overload their 

servers with traffic. Getting caught with automatic requests 

to Google’s search engine gets the IP flagged, leading to the 

need to bypass Captchas to continue the search and 

scrapping. This was a huge difficulty in scraping the web as 

new APIs needed to be implemented in order to get through 

proper amounts of data and actually have results with huge 

sizes. If all data as foreseen had been captured, it is expected 

that Google Cloud Platform would have performed a lot 

faster than a local machine.  

 

Another solution to overcome this problem is to use proxy 

servers. However, this is a paid solution to the problem 

which also slows down the crawling by a significant margin.  

 



Having to crawl through multiple pages also resulted in 

getting flagged by Google and slowed down the data 

acquisition by a lot, since only 10 professors are shown per 

page in the university’s profile page and only 20 papers are 

shown at once in the professor’s profile page. For example, 

when a professor has over 1000 papers, multiple clicks have 

to be simulated. This leads to a very slow web crawling time 

as human speeds of navigating through web pages needs to 

be simulated or it leads to Google flagging and 

‘blacklisting’ certain IP addresses due to the high number of 

requests to its servers.  

 

 

4.2. Data inconsistency and pre-processing 

 

Another huge difficulty to overcome in this task was the 

data inconsistency. When dealing with big data, especially 

from the web, there are multiple ways the same data can be 

displayed.  

 

For example, for the co-author Valarie A Zeithaml, she had 

her name published in multiple papers; however she had her 

name listed as VA Zeithaml, V Zeithaml, Valarie A 

Zeithaml, among others. These slight changes are hard to 

overcome.  

 

The best solution for this is to either match the names by the 

last names or by using algorithms in order to match similar 

names. 

 

 

4.3. PySpark  

 

For PySpark, the biggest difficulty was that using the data 

acquired, the best co-author was always the professor. To 

overcome that, a filter function was used to filter out all the 

authors which had the same last name as the professor, since 

that name could also be written in multiple ways. However, 

this increased the computational time since another 2 

shuffling functions had to be added.  

 

Another huge difficulty of PySpark was to make the 

algorithm be as efficient and fast as possible in order to find 

the best coauthor. For this, the number of shuffling 

functions had to be decreased as much as possible. This 

problem could also be further improved if the number of 

.csv files was decreased. However, then another column of 

data indicating the professor for each co-author would have 

to be added, creating the possibility of increasing the 

calculation time.  

 

 

5. OPTIMIZATIONS AND FURTHER STUDIES 

 

There are a lot of factors that could be used to further 

improve and optimize this project. The first one is 

increasing the number of studies made using Google Cloud 

Platform - GCP. By optimizing this algorithm to be used 

with GCP and parallel computing, plus with better 

management of data, it could drastically decrease the 

computational times. This is because file access and 

calculations would be faster when using top of the line 

processors and databases, which are available when using 

GCP.  

 

Another further study that could be done for this project 

would be to compare the time it takes to find the best co-

author using usual computing resources. For example, one 

could create an algorithm only using Python and its libraries 

without any big data mining resource. This could also be 

done using only queries in SQL. This would allow a time 

comparison for the calculations using python, SQL and 

PySpark. 

 

Lastly, one could also look at correlations of the data 

and do some further data mining with the information 

acquired. By looking at the correlation with quantity of 

papers published vs. number of citations, it could easily give 

more insight of who could be highlighted as a better co-

author for a specific professor.  

 

6. CONCLUSION  

 

In sum, this paper showed how big data can be acquired 

from the internet in a real-world scenario in order to be 

analyzed. Running through the analysis of the results, it 

could be seen how big data tools can be used to help the 

faster processing of big data algorithms and how tools such 

as PySpark were used for data processing. This paper also 

looked at the difficulties of processing such large amounts 

of data due to its data inconsistencies, lack of optimization, 

and difficulties getting ahold of such amounts of data in a 

limited amount of time. However, it can be concluded that 

all these difficulties can be overcome, and big data analytics 

is still critical to get vast amounts of information mined and 

analyzed.  
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